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Abstract

The goal of a separation can be defined in terms of business needs. One goal often used is to provide the required separation
in minimum time, but many other goals are also possible. These include maximizing resolution within an analysis-time limit,
or minimizing the overall cost. The remaining requirements of the separation can be applied as constraints in the optimization
of the goal. We will present a flexible, business-objective-based approach for optimizing the operational parameters of high
performance liquid chromatography (HPLC) methods. After selecting the stationary phase and the mobile-phase components,
several isocratic experiments are required to build a retention model. Multivariate optimization is performed, within the model, to
find the best combination of the parameters being varied so that the result satisfies the goal to the fullest extent possible within the
constraints. Interdependencies of parameters can be revealed by plotting the loci of optimal variable values or the function being
optimized against a constraint. We demonstrate the concepts with a model separation originally requiring a 54 min analysis time.
Multivariate optimization reduces the predicted analysis time to as short as 8 min, depending on the goals and constraints specified.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

High performance liquid chromatography (HPLC)
is one of the most often-used analysis techniques to-
day. A large chemical-based business may operate
hundreds of HPLC instruments. Although effort is usu-
ally spent toward optimizing HPLC methods before
they are adopted for routine use, most HPLC methods
are not fully optimized in the business sense we will
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develop in this report. Even if selectivity is optimized,
we find that very large, additional savings are possible
by optimizing the remaining operational parameters.

1.1. Conventional HPLC optimization

Purnell[1] showed that resolution,Rs, of a peak pair
is influenced by the plate number (N), retention factors
(k), and relative retention (also known as selectivity,
α = k2/k1 for a pair of peaks 1 and 2):

Rs =
√

N

4

α − 1

α

k2
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. (1)
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Whenα and k2 are known,Eq. (1) can be solved
to determine the number of plates required,Nreq, to
achieve a givenRs:

Nreq = 16R2
s

(
α

α − 1

)2 (
k2 + 1

k2

)2

. (2)

The approach of sequentially adjustingk, α, and
N has been taught for many years[2–4], and is of-
ten used by practitioners developing HPLC methods.
However, significant performance improvement is fre-
quently still possible after using the approach. This is
so for several reasons:

1. An arbitrary goal, like resolving all peaks with a
resolution of at least 2.0 and with an analysis time
less than 20 min, is often stated or assumed by a
worker. However, it may be ultimately possible to
achieve the desired separation in much less time or
with much greater resolution than stated in these
goals. Alternatively, the goals, as stated, may be
mutually exclusive and unachievable. It is impos-
sible to determine, in advance, if either of these
conditions will apply.

2. Experimental optimization of an HPLC separation
to its ultimate performance would take dozens if
not hundreds of experiments, and is such a daunt-
ing task that it is almost never done in practice.
Even though many modeling tools are available to
improve separations[3,5–30], many workers are
content to accept marginal improvement, after only
a few experiments, in order to move as rapidly as
possible to actual sample analyses, especially if
analysis results are needed immediately. Thus, a
25% reduction in analysis time may be considered
a good return on a day of experiments to improve a
method, particularly if there are thousands of sam-
ples awaiting analysis, even though the potential
for much larger savings would remain unknown.

3. The approach illustrated above is an example of
univariate optimization in which the three param-
eters (N, α, and k) contributing to resolution are
assumed to be independent and are treated one at
a time while holding the others constant. Univari-
ate optimization will not work reliably, even for a
simple two-parameter problem, if the parameters
interact[31].

4. HPLC is even more complicated than the appar-
ent three-parameter problem depicted inEq. (2),

and has even less chance of being effectively op-
timized with a univariate approach than a typical
three-parameter problem because we do not have
direct operational control overN, α, andk. Instead,
these are influenced parametrically by the actual
experimentally adjustable variables like flow rate,
column length, modifier concentration, etc.

1.2. Objective functions, models, and optimization
methods

Optimization generally requires selecting an objec-
tive function, then driving it to a maximum (or to a
minimum in some cases) by changing one or more
adjustable parameters. Siouffi and Phan-Tan-Luu[5]
outlined the steps required for optimizing chromato-
graphic methods, and summarized numerous objective
functions of chromatogram quality that have been de-
veloped[3,5–15].

Optimal parameter values can be sought by nu-
merous, single- and multi-criterion decision-making
methods. These include statistical methods like Sim-
plex[31], overlapping resolution maps[3], and various
chemometric, regression, and numerical techniques
[5–30].

Since experimental optimization may take dozens
of trials and days or weeks of work, empirical mod-
els, derived from only a few actual chromatograms,
are often used to predict the results of parameter
changes[16–30]. Computer-based modeling of chro-
matograms has been highly developed, and several
programs able to virtually simulate HPLC chro-
matograms and predict the effects of parameter
changes are commercially available (for example
[20–23]). Although many HPLC modeling programs
claim to optimize chromatograms, we need to clearly
distinguish predictive capability from optimization.
Predictive capability can be used to virtually explore
the effects of parameter changes and may be used
empirically to improve chromatograms. Although ac-
curate predictive models can replace many hours of
experimental work with a few minutes of computing,
optimization with this approach may be done inad-
vertently or deliberately in a univariate fashion, or
may not include consideration of all the appropriate
variables. The usual approach entails increasing the
resolution or shortening the analysis time by varying
either one or two parameters at a time, or may use a
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factorial method or a Monte Carlo method to empiri-
cally select gradient parameters[21,22]. Lukulay and
McGuffin gave a comprehensive review of HPLC op-
timization methods including univariate, multivariate,
and parametric modulation techniques[27].

Most of these statistical and model-based methods
focus on mobile-phase composition optimization (or
gradient optimization) with little or no regard to effi-
ciency parameters like flow rate and column length. In
addition, many of these methods seek a compromise of
conflicting goals. For example, allowing the resolution
to worsen may save so much analysis time that the de-
sirability of the resulting chromatogram, as expressed
by the objective function chosen, may be preferred,
even if the overlap is severe for one or more peak pairs.

1.3. Constraint-based optimization

Schoenmakers described theminimum-criteria op-
timization method in which the lowest-acceptable
value of a performance parameter, such as the
lowest-acceptable resolution,Rs,min, is declared[9].
The parameter space can then be searched for the
parameter values meeting this constraint. A second
search can be performed in the allowed parameter
space to minimize retention of the last peak. Alter-
natively, Rs,min can be maximized within a reten-
tion constraint. Researchers using these approaches
have frequently optimized mobile-phase composition
without regard to flow rate, column length, or other
efficiency parameter values (for example[3,17,18]).

Cipollone et al. used the minimum-criteria ap-
proach but included several efficiency parameters in
their optimization of gas chromatography parameters
[19]. Their separation criterion was to resolve every
peak of interest to at least some stated value. Their
optimization approach then involved adjusting the
chromatographic parameters to achieve this resolution
constraint for the least-resolved peak pair in the chro-
matogram in the least amount of time possible. Thus,
achieving the necessary resolution was assured, and
the analysis time required to do so was minimized.

We present here a constraint-based, multivariate-
optimization program for HPLC that uses business
needs for directing the optimization[32]. It combines
an accurate, computer-based, predictive model with
a multivariate optimization specifically focusing on
instrumental parameters. In operation, our goal is to

identify the global optimum with respect to the pa-
rameters allowed to vary. We do not want to merely
improve performance, but to quickly identify the
best-possible performance that meets the business
needs for the problem at hand. The selectivity parame-
ters are picked first using any means appropriate to the
problem (including any of the techniques mentioned
earlier). Once the stationary phase, mobile-phase
components, and other selectivity parameters have
been chosen, actual data from several chromatograms
must be acquired for building an empirical retention
model on which the program operates to optimize
the remaining variables. Extra-column effects are
included in the modeling.

We distinguish separation performance functions,
like resolution, from cost functions, like analysis time
and volume of waste produced. In defining the re-
quired separation performance, we recognize that the
resolution required may not be the same for every
peak, and that performance indicators other than res-
olution may be preferred in some instances. Cost may
be objectively expressed simply as analysis time, as
volume of solvent required per analysis, as actual mon-
etary cost per analysis, or as any objective function
that reflects the business costs. Constraints on pres-
sure, flow rate, volume of waste produced, and various
dimensions may also be included.

It may appear that some of these requirements are
potentially conflicting, but they can usually be re-
solved: performance requirements can be specified
and then a cost-function minimized, or a cost-function
limit can be stated and a performance function max-
imized. Both approaches require defining a response
function to minimize or maximize, and numerous con-
straint values or functions to ensure that the business
needs are met. Either approach gives us the unique
ability to flexibly define the business needs and limits,
and then seek the corresponding global optimum with
respect to the adjustable parameters included in the
model. If both a separation performance function and
a cost function are constrained, then some problems
will not have a solution.

2. Experimental

All work was performed on two similar systems,
both Alliance Model 2690 HPLC systems (Waters,
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Milford, MA). Either a Waters Symmetry C-18 col-
umn, 4.6 mm×15 cm with 5�m packing, or a Zorbax
SB-Cyano column, 4.6 mm × 15 cm with 3.5�m
particles, was used. The temperature was 27◦C. The
detectors in both systems were Waters 996 Photo-
diode Array Detectors used at 210 or 254 nm. The
mobile-phase components were water (from a Milli-Q
purification system, Millipore Inc., Bedford, MA, or
equivalent) and HPLC-grade methanol.

Instructions for calculations were written in an
Excel 2000 workbook (Microsoft Corporation, Red-
mond, WA) following well-established modeling
methods[33]. Numerous macros were written in Mi-
crosoft Visual Basic for Applications to aid in data
entry, model building, and optimization. The Excel
workbook consisted of several worksheets available
to users, including a main sheet depicting the current
results, one containing the raw data and the retention
model, and one containing the extra-column dimen-
sions and their influences on predicted peak widths.
Custom functions can be easily written and incorpo-
rated into optimizations. Optimization is done using
Excel’s Solver Add-In, a Generalized Reduced Gra-
dient nonlinear optimizer. Resolution requirements
for every peak, and limits on dimensions, flow rate,
mobile-phase composition, pressure, in some cases
maximum analysis time, and various other limits are
incorporated as constraints in Solver.

Experimental data are required to build a retention
model. These are collected after selecting a single col-
umn and after selecting and fixing the weak (A) and
strong (B) mobile-phase components, pH, and temper-
ature. Although we have only programmed for binary
mobile phases at this point, the process does not re-
quire thatA and B be pure. Either one can contain
buffers, additives, or blended modifiers, if desired, as
long asA andB mix without phase separation over the
%B range of interest. The various experimental logk
values for each solute are regressed against %B. As
few as two values of %B may be used, but we gener-
ally use five different %B values and regress using a
quadratic model[34]. The regression coefficients are
later used to predictk values of each peak as a func-
tion of %B.

The precolumn peak transit time is calculated
from the precolumn volume and the flow rate,F.
The standard deviation of the sample (σsa, expressed
in time units), by virtue of its own volume,Vsa, is

estimated as:

σsa = Vsa√
12F

. (3)

Additional broadening is caused by the transport of
the peak center through half its own volume out of
the injector loop (only half the peak volume must be
displaced to remove the peak center from the injec-
tor) plus transport through the inlet tube connecting
the injector to the column. Broadening from transport
through tubes is calculated using the short-tube equa-
tion of Atwood and Golay[35]:

σtube = πd2L

4F
N−0.5

(
1 + 3

N

)−0.25

, (4)

whereσtube is the standard deviation of the peak (in
time units) caused by transport through a tube of di-
ameterd and lengthL, andN the number of theoretical
plates in the tube. We assume good mixing occurs in
unions so that peak variances from the various parts
of the HPLC instrument are additive. The temporal
precolumn peak width is converted to spatial units at
the column inlet by multiplying with the mobile-phase
velocity on the column and dividing by 1+ k.

Once the peaks reach the column, the basic calcu-
lation procedure follows a time-segmented approach
[28–30]using 120 segments. The mobile-phase com-
position is calculated as a function of location on the
column at each time segment. Thus, the velocity of
each peak and the distance traveled are determined in
each time segment, and a running record of peak po-
sition at the end of each time segment is kept. Plate
height predictions are calculated using the equation
of Kennedy and Knox[36], and are applied in each
time segment to determine how much the peak has
broadened. The peak variance in each time segment is
summed with that from all preceding segments, and a
running record of peak width at the end of each time
segment is kept. When gradients are applied, peak
widths are corrected for the effects of the gradient at
every time segment using the step-gradient form of the
band compression factor[37]. When the peak reaches
the column outlet, the postcolumn transit time and
variance are calculated and added to the values at the
column outlet to predict the observed elution time and
peak width. This approach is applicable to gradients
of any shape. It makes no assumptions about the lin-
earity of logk versus %B, nor the dependence of peak



T.L. Chester / J. Chromatogr. A 1016 (2003) 181–193 185

width on the value ofk for each peak at the column
outlet. At the current state of software development,
the peaks are assumed to be Gaussian shaped and sym-
metrical. In practice, this is not a serious oversight be-
cause the resolution requirement around a tailing peak
can simply be set higher than for a normally shaped
peak. (Note that the scope of this report is limited to
isocratic optimization. Because both the column and
mobile phase can be assumed to be uniform in space
and time in isocratic HPLC, the 120-segment approach
is not required. However, it does no harm other than
using additional computer resources and computation
time. As benefits, it provides the capability of predict-
ing gradient chromatograms, and provides a platform
for addressing gradient optimization and the use of
compressible mobile phases in the future.)

Pressure is predicted empirically, beginning with the
actual pressure observed within the model data and
applying the proportionalities from Giddings’ compre-
hensive flow equation[38].

The test solutes were benzyl alcohol, phenol, phe-
noxyethanol, potassium sorbate, benzoic acid, methyl-
paraben, and ethylparaben, and were obtained from
various commercial sources. In addition, an unknown
impurity was introduced by one of the test solutes, and
this impurity was included in the modeling and the
optimization. Aqueous ammonium nitrate was used to
mark the mobile-phase holdup time.

3. Results and discussion

3.1. Retention time and peak width accuracy

Methyl- and ethylparaben were analyzed at 40, 50,
60, 70, and 80% methanol in a water/methanol mobile
phase, using the C-18 column, to build a model for
testing the accuracy of predicted retention times and
peak widths. This model was then assessed by compar-
ing the predicted retention time against actual reten-
tion times for methanol concentrations of 45, 55, and
65% using the same column. The root-mean-square
error in the predicted retention times was 0.007 min.
When both flow rate and %B are changed, retention
time prediction errors are less than 0.02 min over a
wide range of conditions as long as the predictions are
kept within the %B range of the original data. Predic-
tions using %B values beyond the range of the origi-

nal data may give reliable predictions in some cases,
but the best practice to achieve high-accuracy predic-
tions is to stay within the %B range of the model
data.

When methanol is added to water at ambient tem-
perature, the viscosity increases to a peak value ap-
proximately 82% higher than for pure water. Adding
additional methanol then decreases the viscosity until
it is 37% lower than pure water. These changes in vis-
cosity affect the diffusion coefficients of solutes be-
cause diffusion rates are inversely proportional to solu-
tion viscosity, all else being held constant. In addition,
various solutes will have different diffusion rates in the
same solution due to molecular weight and molecular
volume differences[39]. Therefore, values of solute
diffusion coefficients vary among solutes, and these
all change with HPLC conditions. Rather than keeping
track of all these effects, we used a compromise value
of the diffusion coefficient for all solutes and all %B
values in the model. We typically adjust the value of
this diffusion coefficient to empirically minimize the
differences between the observed and predicted peak
widths for the model data, and then apply this ad-
justed value to the subsequent prediction calculations.
Using a value of 4.55 × 10−6 cm2/s for the methyl-
and ethylparaben data, the largest absolute deviation
between predicted and actual peak width occurred for
methylparaben with 70% methanol mobile phase: The
actual 4�-peak width, averaged from five injections,
was 0.15 min, and the predicted 4�-peak width was
0.16 min. Although the relative prediction error is 7%
for this peak, the absolute error is only 0.01 min (less
than 1 s). With weaker mobile phase and more strongly
retained methyl- and ethylparaben peaks, the absolute
errors in predicted peak widths ranged between 0.0007
and 0.006 min, or 0.1–3.5% relative to the correspond-
ing actual peak widths for peaks as wide as 0.7 min. If
a column is poorly packed and inefficient, the effec-
tive diffusion coefficient assigned in this process may
be significantly different than the actual diffusion co-
efficient for a typical solute.

We have used this modeling approach in over 30,
diverse projects so far, achieving similar results in re-
tention time and peak width accuracy in every case.
To illustrate the optimization capabilities, we will con-
sider one data set, and show how optimal parameter
values are found and how they vary depending on the
approach taken and the business needs specified.
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Table 1
Retention time (min)

Peak Identity %B

10 20 30 40 50

1 Benzyl alcohol 6.273 4.864 3.852 3.07 2.529
2 Phenol 6.785 5.354 4.221 3.294 2.647
3 Phenoxyethanol 10.352 6.861 4.852 3.541∗ 2.729
4 Unknown 12.668 7.737 4.919 3.541∗ 2.751
5 Potassium sorbate 13.698 8.737 5.822 3.952 2.887
6 Benzoic acid 16.29 10.267 6.646 4.34 3.058
7 Methylparaben 38.629 18.677 9.756 5.392 3.414
8 Ethylparaben 95.079 38.316 16.405 7.613 4.167

Retention times, as reported by the data system, observed using a Zorbax SB-Cyano column, 4.6 mm× 150 mm with 3.5�m particles.
The flow rate was 1.00 ml/min. The mobile-phase holdup time was 1.743 min. The total extra-column volume was 0.062 ml. The highest
pressure observed was 19.2 MPa. The peaks marked by asterisk were not distinguishable, and the time in the table for these peaks is that
reported by the data system for the apex of the merged peak.

3.2. Example model

A retention model for seven preservatives and one
unknown impurity was developed using the cyano col-
umn. The retention times for the initial experiments
are shown inTable 1. A retention model and a window
diagram of the minimum retention factor (αmin) are
shown inFigs. 1 and 2. For purposes of illustration,
let us apply the model derived from this column to a
similar column with 5�m diameter particles but oth-
erwise identical. The corresponding pressure for this
column is 7.38 MPa (1071 psi). (When changing the
column in practice, we recommend that a new reten-
tion model be developed on the specific column in use
before making the final parameter adjustments.)

Among the initial experiments, the 20 %B trial is
best, but none of the initial experiments separate all

Fig. 1. The retention model for the data inTable 1.

the peaks with a resolution of 2.0 or better using a
5�m diameter particle in a 15 cm long column. Upon
entering the initial retention data, the model is auto-
matically applied to the main sheet where parameter
values can be explored, and predictions and optimiza-
tions can be performed.

In most of the examples to follow, we will use 2.0 as
our resolution goal around every peak. We have found
that aαmin value of 1.08 is generally required to sep-
arate all peaks withRs at least 2.0 if the retention fac-
tors are sufficiently high. The window diagram shows
that the %B range available meeting this selectivity re-
quirement is approximately 10%< %B < 25%. The
highestαmin value occurs at 19 %B, but, with this mo-
bile phase, the last peak to elute would have ak value
of nearly 24. Therefore, let us arbitrarily choose 22%
as our %B starting value becauseαmin is 1.11 (still
sufficient) and becausek for the last peak is 18.1, a

1

1.04

1.08

1.12

1.16

0 10 20 30 40 50 6

%

 m
in

0

Fig. 2. The selectivity window diagram for the data inTable 1.
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reduction that should save considerable time from an
isocratic analysis.

3.3. Univariate optimization

From this starting point we will now illustrate the
predictive capabilities of the software to explore the
effects of three variables, column length (L), flow rate
(F), and %B, focusing our attention on the resolu-
tion of all the peaks and the retention time of the last
peak. For a fixed flow rate of 1.0 ml/min we find that
a 25 cm column length separates all peaks more than
adequately. The lowestRs is 2.12 occurring between
peaks 3 and 4, and the retention time for the last peak
is 53.59 min. This chromatogram is shown inFig. 3.
Since we have exceeded our goal of achievingRs val-
ues of at least 2.0, we should be able to exchange some
excess resolution for a shorter analysis.

At this point, many practitioners would choose
to develop a gradient method since peaks are still
somewhat crowded early in the chromatogram, and
are very sparse in the second half. FromFig. 3, it
is easy to imagine starting a gradient at 16 min and
eluting the last peak by about 23 min. With 1 min
added to program the mobile phase back to the start-
ing conditions, and 14 min (which is 4.9 column
volumes at 1.00 ml/min with this column) added for
re-equilibration, we would have a method capable of
being cycled every 38 min. Let us reserve the possi-
bility of using a gradient, and instead complete a uni-
variate optimization and a multivariate optimization
of this example isocratically using the software.

Using the predictive capabilities of the software to
test the effects of additional parameter changes, we
find that on univariately changing the column length,
both 15 and 20 cm columns produce shorter analyses

Fig. 3. This is the initial simulated chromatogram of the peaks
from Table 1following empirical adjustments to achieve or exceed
the required resolution.L = 25 cm,F = 1 ml/min, %B = 22, and
the pressure is 12.3 MPa. All resolution criteria are exceeded.

Fig. 4. The simulated chromatogram fromFig. 3 after univariate
optimization. L = 25 cm, F = 1.25 ml/min, %B = 22, and the
pressure is 15.4 MPa. All criteria are met. The elution order is the
same as inFig. 3.

but fail to meet the resolution requirement. We con-
clude that 25 cm is the proper length. Several trial val-
ues of flow rate then show that 1.25 ml/min shortens
the retention time of the last peak to 43.87 min while
meeting the resolution requirement. Increasing the %B
any further, even with lowering the flow rate, does not
produce a shorter analysis that still resolves all the
peaks. The chromatogram at this point,Fig. 4, saves
about 10 min from the chromatogram inFig. 3. The
pressure required is 15.4 MPa (2231 psi). If we were
to apply a gradient at this point, in a fashion similar
to that described earlier, the cycle time for injections
would be about 31 min.

3.4. Multivariate minimization of analysis time

We will now illustrate using Solver to vary the same
parameters,L, F, and %B, multivariately to minimize
the elution time of the last peak under isocratic condi-
tions. If we constrain the resolution around every peak
to be at least 2.0, and limit the maximum flow rate
to 5 ml/min and the maximum pressure to 27.6 MPa
(4000 psi), then the solution requires only 26.39 min
to elute the last peak while meeting all the constraints.
The pressure is at the 27.6 MPa limit,L = 24.4 cm,
F = 2.30 ml/min, and the mobile phase is 20.33 %B.

We have treated the column length as a continu-
ous variable. Since a 24.4 cm column is impractical,
let us test the nearest commercially available column
lengths on both sides of this optimal value. Fixing
the column length at a different value requires that
we re-optimize the remaining parameters since their
previous values correspond to the 24.4 cm column.
The best solution using a 25 cm long column requires
27.22 min, 27.6 MPa, 2.24 ml/min, and 20.53 %B. The
resulting chromatogram is inFig. 5. This solution
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Fig. 5. The simulated chromatogram fromFig. 3 after multi-
variate optimization with a 27.6 MPa pressure limit.L = 25 cm,
F = 2.24 ml/min, %B = 20.53, and the pressure is at the limit.
All criteria are met. The elution order is the same as inFig. 3.

allows an isocratic method to cycle in less time than
both of the previous gradient solutions.

It appears that this solution works because the better
selectivity made available by lowering %B from 22
reduces the plate number requirement. This allows a
faster flow rate that compensates for the effect of the
increase ink values on the analysis time. But why did
the solution not use the %B giving the best selectivity,
approximately 19%? The answer is that 19% is the
best %B only when considered univariately, and that
if we set %B to 19, then the higher resultingk values
would require more time than could be made up by
increasing the flow rate and shortening the column
while still meeting the constraints.

The 27.6 MPa pressure in the last solution is
higher than preferred by many users. Let us op-
timize again, this time arbitrarily choosing the
pressure from our initial univariate optimization
(15.4 MPa) as our upper limit. With multivariate
optimization we now get a solution in which the
last peak elutes in 32.26 min withL = 20.2 cm,
F = 1.55 ml/min, and using 20.4 %B. All the res-
olution and pressure constraints are met. A fixed
15 cm column length requires 47.92 min at 5.7 MPa
and 0.77 ml/min. With a 20 cm column the separa-
tion takes 32.65 min at 14.9 MPa and 1.51 ml/min.
A 25 cm column requires 42.79 min at 15.4 MPa and
1.25 ml/min. The 20 cm long column is best for this
problem, and the resulting chromatogram is shown
in Fig. 6. The time required for an isocratic separa-
tion with these conditions is still comparable with
the gradient solution following the earlier univariate
optimization.

Except for the longest column, the pressure required
in the last example was less than the pressure limit. We
can gain further understanding of the complicated de-

Fig. 6. The simulated chromatogram fromFig. 3 optimized for a
20 cm long column. The pressure limit was set at 15.4 MPa but
the required pressure is only 14.9 MPa.F = 1.51 ml/min, and
%B = 20.4. All criteria are met. The elution order is the same as
in Fig. 3.

pendence of the optimal analysis time on the pressure
limit by plotting the parameter values from a series
of optimal solutions (i.e. the loci of optimal param-
eter values) against the pressure limit,Fig. 7. Here,
we treat the column length as a continuous variable,
and the figure represents the shortest possible analysis
time and the corresponding values ofL, %B, andF as
a function of the pressure limit.

Fig. 7 shows that increasing the pressure limit
yields a monotonic reduction in analysis time when
the column length is continuously variable. This
analysis-time reduction is accomplished by allowing
F to increase as more pressure is made available.
Surprisingly,L increases and %B decreases in order
to go faster as the pressure limit is increased. Both
of these moves (lengthening the column and weak-
ening the mobile phase in order to go faster) are
counter-intuitive, and reflect the difficulty of achiev-
ing an optimization among interdependent variables
using a conventional or univariate approach.

When we restrict the column length to a few dis-
crete values, the best column length to use is still de-
termined by the pressure limit as shown inFig. 8. This
is a plot of best-possible analysis times against the
pressure limit for 15, 20, and 25 cm columns.F and
%B are not shown in the figure, but they vary in the
same fashion as inFig. 7. Below 9 MPa the 15 cm col-
umn produces the shortest analysis time, 48 min. The
15 cm column requires only 5.7 MPa to produce its
best-possible result. Therefore, in this example, since
the actual pressure is always lower than the pressure
limit, it has no bearing on the performance of this col-
umn for this separation.

The longer columns require more pressure to
achieve their optimal flow rates, and when we do not
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Fig. 7. Loci of the necessary analysis time and the optimal values of parameters as functions of the pressure limit. Column length is
treated as a continuous variable in this plot.

provide enough pressure, both produce longer anal-
yses than the 15 cm column. But as we increase the
pressure available above 9 MPa, the 20 cm column is
able to perform the analysis in less time than the 15 cm
column. The 20 cm column remains pressure-limited
until the pressure is allowed higher than 15 MPa. This
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above. The 25 cm column is pressure-limited everywhere. Note that the 15 cm column gives the fastest analysis when the pressure limit is
below 9 MPa. Between 9 and 15 MPa the 20 cm column is fastest, and above 22 MPa the 25 cm column is fastest.

pressure corresponds to the optimal conditions for
this column, and the solution does not change further
as the pressure limit is allowed to go higher.

Above 22 MPa, even faster analysis is possi-
ble using the 25 cm column. This column remains
pressure-limited over the entire range of the figure.
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So, we see that for this problem the best column
length depends on the pressure we will allow: the
15 cm column is best if the pressure must remain be-
low 9 MPa, between 9 and 22 MPa the 20 cm column
is best, and above 22 MPa the 25 cm column will
produce the shortest analysis time.

Additional plots of loci of optimal parameter values
against other constraints can be easily made and reveal
similar interdependencies.

3.5. Maximizing resolution within given time and
pressure limits

Let us suppose that our business requirement is a
30 min cycle time between successive injections. If we
need 2 min beyond the last peak apex to finish the in-
tegration and to cycle the autosampler, then a reason-
able business question could be, what is the best res-
olution possible while eluting the last peak in 28 min
or less and keeping the pressure under 17.2 MPa
(2500 psi)?

This requires a change in the optimization approach.
Let us limit the elution time of the last peak to 28 min,
and maximize the resolution around the worst peak
pair. This requires us to identify the worst pair and
use the resolution between these peaks as the opti-
mization target. Any given peak pair may not always
be the worst pair as conditions are explored, so let us
write a custom function giving the minimum resolu-
tion among all eight peaks, and use this as the target in
a maximization. (The previousRs target values must
be eliminated.)

The solution calls forL = 19.9 cm, F =
1.76 ml/min, and 20.41 %B. The last peak elutes in
28.0 min. The worstRs value is 1.92 and is realized
for all of the first four peaks. Using a 20 cm column
gives essentially the same result.

3.6. Minimizing cost per analysis

If analysis time is not the overriding business con-
cern, then minimizing the cost per analysis may be
important. Let us assume that our costs are instrument
time at US$ 50 h−1 and solvent at US$ 50 l−1. Let us
further assume we are willing to allow up to 45 min to
elute the last peak. We now need a custom cost func-
tion based on time and solvent usage. With a 2 min
delay between the apex of the last peak and the next

injection, our cost function would be:

cost per analysis= (tR,last + 2 min)
US$ 50 h−1

60 min/h

+ F(tR,last + 2 min)
US$ 50 l−1

1000 ml/l
(5)

wheretR,last is the elution time of the last peak in min,
andF is in ml/min. Using this formula, the costs per
analysis inFigs. 3–6are US$ 49.11, 40.20, 27.63, and
31.50, respectively.

Recognizing that reducing the column diameter (dc)
will greatly reduce flow rate requirements, let us in-
clude the column diameter among the parameters to be
varied in our cost minimization. Setting the pressure
limit at 27.6 MPa we find a solution with a cost per
analysis of US$ 26.69, but with a surprise: the method
will run at lower cost with a larger column diameter.
The best values areL = 23.75 cm, dc = 5.15 mm,
F = 2.96 ml/min, and 20.24 %B. The retention time
for the last peak is 25.2 min, so our time constraint
does not affect this solution. The pressure is at the
27.6 MPa limit. The increase in column diameter is
driven by extra-column effects: plate numbers for the
early peaks are not degraded as much by extra-column
volume effects with a larger diameter column, thus al-
lowing a faster mobile-phase velocity. This gives sav-
ings in the time-based cost that exceed the increase
in solvent cost. FixingL at 25 cm and re-optimizing
the remaining parameters, the cost increases to US$
27.38 and requiresdc = 4.2 mm, now smaller than
the starting value. Repeating the optimization using
L = 20 cm we find a solution costing US$ 29.09 per
analysis withdc = 6.1 mm. Again, this behavior re-
flects the interdependencies of the variables. As we
saw earlier with the dependence of analysis time on
the pressure limit, if we lower the pressure limit then
all the parameters will have different optimal values,
and the cost per analysis will increase.

3.7. Optimizing a stability-indicating method for a
separation including peaks of no interest

There are often peaks in a chromatogram that are of
no interest. Setting theRs constraint on these peaks to
zero can have a profound effect on the optimum con-
ditions. This will allow these peaks to freely overlap
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Fig. 9. The simulated chromatogram fromFig. 3 optimized for a stability-indicating assay of peak 6 withRs constrained at 2.0 for that
peak.Rs is constrained at 1.5 for peaks 2 and 5.Rs constraint values for the remaining peaks are zero.L = 20 cm, F = 1.75 ml/min,
%B = 35.58. All criteria are met. (Note that the time scale is different than in the earlier figures.)

with each other, but not with the peaks of interest. For
example, if theRs constraint is set to zero for peaks
3 and 4, the remaining peaks can be resolved in only
15.88 min using a 25 cm column at 1.25 ml/min with
33.9 %B and 15.4 MPa.

There are often more complicated situations where
not all peaks of interest must be separated with the
sameRs value. Let us imagine in the current exam-
ple that peak 6 is our main peak of interest in a
stability-indicating analysis, and that peaks 2 and 5 are
degradant peaks that are not supposed to appear if the
experiment is stable, and that peaks 1, 3, 4, 7, and 8 are
not of interest to us as long as they do not overlap with
peaks 2, 5, and 6. We can set theRs constraint around
peak 6 at 2.0 to give us a good opportunity to mea-
sure its area without interference. We may only need
to recognize peaks 2 and 5 whenever they are present,
so Rs = 1.5 is adequate for them. TheRs constraint
for the remaining peaks can then be set at zero. With
a pressure limit of 17.2 MPa, we get a solution taking
only 8.01 min withL = 20 cm,F = 1.75 ml/min, and
35.58 %B, yet it fully meets the business requirements
as stated. The chromatogram is shown inFig. 9. Note
that the resolution produced around peak 6 is actually
2.2, not 2.0 as constrained. This is because the res-
olution around peak 2 is 1.5 under these conditions,
and the chromatogram cannot be eluted any faster
while satisfying this constraint. A 10 min time be-
tween injections would be possible using this isocratic
method.

3.8. Other possibilities

Although not illustrated above, we could include
particle size among the varied parameters. If our goal

is trace analysis, then we might like to achieve the best
limit of detection or the best limit of quantitation pos-
sible. If we are using a mass-sensitive detector, like an
evaporative light-scattering detector, then we would
like to minimize the time-measured width of a target
peak while achieving a stated resolution around it. This
would provide separation from its neighbors while
maximizing the mass flux into the mass-sensitive de-
tector, thereby giving the best chance for detection.
However, if we were using a concentration-sensitive
detector we would not like to maximize the mass flux,
but instead maximize the solute concentration when
the peak apex is in the detector. This means minimiz-
ing the volume of the peak while achieving all the
other required constraints.

We can continue writing custom functions and cal-
culating optimal solutions with evermore-complicated
constraints. For example, we could easily combine
what we have seen so far to maximize resolution while
specifying a maximum-allowed analysis time and a
maximum-allowed analysis cost. We must be care-
ful about setting potentially mutually exclusive con-
straints (such as a resolution requirement and a time
limit). A solution may be possible when only one
constraint of a mutually exclusive constraint pair is
limiting, as we saw with the cost minimization ear-
lier. However, if two or more mutually exclusive con-
straints are limiting, then Solver will not be able to
find a feasible solution.

3.9. Dealing with local optima

If there is no value of %B that produces anαmin
value of at least 1.08, then it is unlikely there will
be a solution capable of providingRs > 2.0 for all
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the peaks. Alternatively, there may exist several %B
windows capable of achieving the desired resolution.
Complicated optimization problems often produce a
result representing a local optimum rather than the
desired global optimum. Solver is sometimes able to
jump from one %B window into another nearby win-
dow where a better solution exists. However, Solver
is not always able to jump like this, and may fail to
solve the problem or may report a local optimum. If
the reported solution is limited by a constraint, Solver
may not be able to move around this limit even if
the global optimum exists in allowed parameter space
nearby.

These problems can be addressed by several means,
for example, evaluating the model over a factorial
grid in the space of the varied parameters to find the
approximate location of the global optimum before
launching Solver. We have found that this is not nec-
essary to get useful results, and have elected not to
develop the software further to do this automatically.
Instead, we routinely test our solutions by starting the
optimization from a variety of locations in the param-
eter space, making sure that we cover all the allowed
parameter space in the process. If sufficient selectiv-
ity for the problem exists in multiple %B windows,
then we will launch the optimizer from each one. If a
solution is found at a constraint limit, we change one
or more parameters to relieve the constraint, then start
the optimization again. It immediately becomes clear
if the process is getting stuck as it attempts to move
along a constraint boundary.

If a constraint (like pressure) limits a solution, then
the response surface may be steep with respect to one
or more related parameters (like flow rate or particle
size). Yet, the response surface in the neighborhood of
the optimum may be quite flat with respect to one or
more of the remaining parameters. The optimizer may
sometimes report slightly different but essentially sim-
ilar results, particularly with respect to the flat param-
eters, when started from different locations. In such
cases, it is useful to use the predictive capabilities of
the program to vary the parameters near the optimum
and find out how sensitive the optimum is with respect
to each variable. These efforts give much insight into
the characteristics of the problem being investigated
and the robustness of the result with respect to each
parameter, and take only a few minutes of time at the
computer.

4. Conclusion

We have demonstrated how complicated HPLC op-
timization is, even when only three or four parameters
are varied, and how difficult it is to intuitively guess
or experimentally determine optimal HPLC conditions
using conventional means. However, after just a few
experiments to build a model, a separation can be op-
timized in minutes using our approach.

Each optimization takes about 1 min to calculate on
a 733 MHz computer, and each optimization reflects
dozens, if not hundreds, of trial solutions. The equiv-
alent of months of laboratory work can be done in a
short computer session. The result can be an optimum
based on requirements and constraints so complicated
and interrelated that the optimum cannot be found ex-
perimentally in any economically reasonable fashion.
As in the model we demonstrated, many problems
that appear to require a gradient can be solved iso-
cratically once all the business needs have been stated
and addressed. Extension of the optimization approach
shown here to gradient problems is possible.
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